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a b s t r a c t 

Spatial distributions of light scattered by single particles correlate closely with their morphologies in 

terms of refractive index (RI) distribution. Diffraction imaging of scattered light under coherent excitation 

presents a unique approach to acquire and extract feature parameters for particle classification. A vali- 

dated method has been applied in this study to accurately simulate diffraction imaging of light scattered 

by homogeneous particles and obtain calculated diffraction image (DI) data. The feature parameters of DI 

data have been extracted by the gray-level co-occurrence matrix (GLCM) algorithm. We have developed 

an unsupervised machine learning algorithm based on Gaussian mixture model (GMM) to classify 1965 

particles made of single and double spheres, cylinders and ellipsoids with varied RI values in parameter 

space. It has been shown that selected GLCM parameters combined with integrated forward scatter in- 

tensity can provide effective markers for accurate and morphology based classification. For 1791 particles 

of the same RI, the mean accuracy values of classifying particles into 3 particle types range from 82.6% to 

97.2%. These results demonstrate the strong potential of diffraction imaging method for rapid analysis and 

classification of nonspherical and homogeneous particles by the GMM classifiers that is very challenging 

in comparison to distinguishing biological cell types. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Rapid analysis and recognition of micron-sized particles have

ide applications ranging from atmospheric and oceanic to biolog-

cal sciences [1–3] . While fast methods such as flow cytometry and

achine-learning based microscopy profiling are available, these

pproaches often require fluorescence staining and yield limited

orphology information like 2D organelle sizes only [4] . In com-

arison, imaging of light scattered elastically by single particles

nder coherent excitation allows 3D characterization by taking ad-

antage of strong correlations between image features and particle

orphology. We have previously developed a method of diffraction

maging flow cytometry (DIFC) that can rapidly acquire diffraction

mages (DIs) from single particles including biological cells with
∗ Corresponding author at: Department of Physics, East Carolina University, 

reenville, NC 27858, USA. 
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o need for staining [5–7] . Classifying single spheres of different

iameters and cells of different phenotypes have been empirically

emonstrated using feature parameters of the measured DIs [8–

2] . Still, the correlations between the image features of DI data

nd imaged particle’s morphology remain to be quantified and ex-

lored for classification purpose. 

Among various algorithms used for extracting features of DI

ata, we found that the gray-level co-occurrence matrix (GLCM)

lgorithm [13] is the most effective one in terms of robustness

nd computational cost. Combined with machine learning, GLCM

resents a powerful tool for analysis of large populations of parti-

les in real time by the DIFC method. GLCM applies second-order

tatistics to characterize textures of an input image by matrix ele-

ents expressed as the relative frequencies of paired pixel values

long one of four array directions. One can extract up to 15 para-

ents for texture characterization from the matrix [13–15] . Unlike

ourier or Gabor transforms, GLCM parameters are very abstract

or interpretation according to visual perception such as spatial

https://doi.org/10.1016/j.jqsrt.2018.12.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jqsrt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2018.12.010&domain=pdf
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Fig. 1. Schematic of DIFC imaging configuration used for simulations with the green lines representing “rays” of light scattered by a particle at the origin by a laser beam 

incident along the z-axis pointing into paper. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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period and rotational symmetry among image pixels. It is there-

fore of significant interest to quantify the correlations between

particle morphology and the DI textures characterized by differ-

ent sets of GLCM parameters. Furthermore, development of rapid

and label-free methods based on these correlations become pos-

sible to group particles into different morphology types by com-

bining GLCM characterization of DI data with machine learning

based classification. In this report, we present the results of a study

on classification of 3 particle types by GLCM parameters extracted

from DI data. A previously developed model of DI simulation has

been validated and applied to calculate unpolarized DI data from

given morphology of nonspherical particles made of two identical

objects of spheres, cylinders and ellipsoids. For comparison, each

particle type also includes single spheres, cylinders and ellipsoids.

A total of 1965 particles have been generated and investigated with

varied sizes, orientations and refractive index (RI) values. Different

sets of GLCM and scattering intensity parameters were selected to

evaluate their performance for type recognition by Gaussian mix-

ture model (GMM) based classifiers. We found that selected GLCM

parameters combined with integrated forward scattering intensity

can serve as effective markers for characterization of the diffrac-

tion patterns and rapid classification of homogeneous particle. 

2. Theoretical methods 

In an experimental DIFC system, single particles are rapidly

moved through an incident laser beam with scattered light col-

lected by an imaging unit that includes a microscope objective

for acquisition of DI data [5–7,10,16] . With a previously developed

method, we can perform simulations of the diffraction imaging

process by a configuration based on the experimental system with

details given elsewhere [17] . Briefly, a core fluid of particle sus-

pension is hydrodynamically focused by a sheath fluid in a square

channel of the glass flow chamber to force the moving particles in

single file. An incident laser beam of λ0 = 532 nm in wavelength

in vacuum propagates along the z -axis and is focused on the core

fluid in a spot of about 30 μm in diameter. As a particle passes

through the beam focus, it emits coherent light as scatter passing

through the host medium of water and chamber glass before col-

lection by an imaging unit aligned along the x -axis. Fig. 1 shows a

schematic of the imaging configuration. The imaging unit in our

experimental system consists of an infinity-corrected 50x objec-

tive of 0.55 in NA (378-805-3, Mitutoyo), a polarizing beam splitter

for separating scattering light into s- and p-polarized components,

two tube lenses and two cameras. The unit, with camera sensors

fixed to the focal planes of tube lenses, is translated away from

the focused position conjugate to the core fluid for DI acquisition.

We have shown that the off-focus translation of �x > 0 to non-

conjugate positions toward the flow chamber make it possible to

adjusts angular cone of light collection with increased contrast for

acquired DI data [6,17] . For DI calculations performed in this study,

we set �x = 150 μm in simulation which is the same as our exper-
mental setting which affects image contrast and GLCM parameters

f calculated DIs [9,17] . 

Simulations with the DIFC imaging configuration illustrated in

ig. 1 were performed in two steps of light scattering modeling

nd simulation of diffraction imaging process. First, we consider

 particle with its RI given by n p ( r , ω) in a rectangular volume V p

ontaining the particle only and being immersed in a host medium

f volume V h of constant RI n h , where ω is the angular frequency

f the incident light. The electric field E s of scattered light can be

btained from the following volume integral equation [18] 

 s (r , ω; k s ) = ( k h 
2 ↔ 

I + ∇ ∇ ) 

∫ 
V p 

e i k s ·(r −r ′ ) 

4 π | r − r ′ | ( m 

2 (r ′ , ω) − 1) E (r ′ , ω; k s ) dr ′ 

∀ r ∈ V h ∪ V p . (1)

here E = E i + E s in the volume integral term is the total field with

 i as the field of incident light with k h = (2 π / λh ) z as the wavevec-

or in the host medium and z as unit vector of z-axis, 
↔ 

I the unit

yad, k s the wave vector of scattered wavefields with | k s | = | k h | for

lastic scattering and ( θ s , ϕs ) for its polar and azimuthal angles,

( r , ω) = n p ( r , ω)/n h the relative RI of the particle. It is clear from

q. (1) that the scattered light intensity in a far-field region, I s ( k s )

 | E s ( k s )| 
2 , can be regarded as a mapping function of m( r ’) for an

ncident light of given ω = 2 πc/( λh n h ) = 2 πc/ λ0 with c as the light

peed in vacuum. 

To solve for the scattered field E s , we employed an ADDA code

hat has been developed by Yurkin and Hoekstra for implementa-

ion of the discrete-dipole-approximation (DDA) algorithm and is

vailable in public domain [19,20] . The code discretizes V p of a

article scatterer into cubic voxels called as dipoles of size d and

efines the ratio of λh /d as dpl (dipole-per-wavelength) to quan-

ify the discretization accuracy, which should be set larger than 10

or values of m close to 1. By importing the relative RI values of

( r ) at λh for each voxel, Eq. (1) can be solved in voxels of V p 

or E field as a linear equation group given E 0 of an incident light

eam. The Eq. (1) is solved again for E s in a far-field region of V h 

efined by | r | > > | r ’ | and | r | > > λh . For this study, we consider

articles made of single or double homogeneous spheres, cylin-

ers and ellipsoids with the n p values set either to n ph = 1.558 for

olystyrene particles [21] or n pl = 1.400 for cell-like ones. The host

edium is treated as water with n h = 1.334 at λ0 = 532 nm. The

maginary RI values for both particle and host medium were set to

.5 × 10 −5 . The ADDA simulations were performed in parallel mode

n a single workstation equipped with two Xeon E5-2650 CPU of

2 cores each in the high-performance computing cluster at the In-

titute for Advanced Optics. The incident light beam was set to a

lane-wave function and dpl values to 15 or larger. For particles of

ingle-object, size and orientation were varied to obtain different

Is for cylinders and ellipsoids. For particles made of two identi-

al objects, the center connection vector C was varied by | C | and

ts polar and azimuthal angles, ( θ c , ϕc ). After E s of scattered light
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Fig. 2. Measured (top row) and calculated (bottom row) DIs with �x = 150 μm and λ= 532 nm. Values of sphere diameter D s are labeled at the top of each image and C 

vectors at the bottom of calculated DIs for double spheres. 
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Table 1 

Particle morphology and RI for calculated DIs. 

Type ( 1 ) Size (μm) ( 1 ) n p 
( 2 ) N DI 

( 3 ) 

Spheres single D s ∈ [1, 9] 1.558 (33) 50 

1.400 (17) 
614 

double D s = 3.0 1.558 (532) 564 

| C | ∈ [0.1, 6] 1.400 (32) 

Cylinders single D c ∈ [1, 9] 1.558 (130) 157 

h ∈ [1, 9] 1.400 (27) 
699 

double D c = h = 3 1.558 (510) 542 

| C | ∈ [0.1, 6] 1.400 (32) 

Ellipsoids single D 1 ∈ [1,9] 1.558 (70) 104 

D 2 /D 1 ∈ [0.2, 1] D 3 /D 1 ∈ [0.2, 1] 1.400 (34) 
652 

double D 1 = 3 1.55: (516) 548 

D 2 /D 1 = 0.5 D 3 /D 1 = 1 | C | ∈ [0.1, 6] 1.400 (32) 

1 Particle types, D s = sphere diameter, D c = cylinder diameter, h = height, D 1 , D 2 , 

D 3 = principal diameters of ellipsoids. 
2 Numbers of particle or unpolarized DIs are in parenthesis. 
3 N DI : left = number of unpolarized DIs or particles; right = total number for each 

type. 
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s obtained in a far-field region by executing the ADDA code, the

utput data is saved in the form of angle-resolved Mueller matri-

es of S ij ( θ s , ϕs ) with i, j = 1, 2, 3 4 and ( θ s , ϕs ) representing the

irection of k s [18] . The simulation times of Mueller matrix data

y different particles ranged from 5 minutes to 20 minutes. 

In the second step of DI simulation, an in-house developed code

uilt on MATLAB (MathWorks, 2013a) reads selected matrix ele-

ents of S ij and project them on a virtual input plane �in shown

n Fig. 1 . This produces an input image I in (x 0 , y, z) with θ s ∈ [60 °,
20 °] and ϕs ∈ [150 °, 210 °] and − x 0 is the intercept of �in to the x-

xis. Different combinations of S ij for producing I in can be derived

ccording to the polarizations of incident and scattered light. With-

ut loss of generality, the calculated DIs is obtained from S 11 ( θ s ,

s ) as follows 

 in (−x 0 , y, z) = 

| cos φs sin θs | 
x 0 2 (1 + tan 

2 φs + 

1+ tan 2 φs 

tan 2 θs 
) 

S 11 ( θs , φs ) · (2)

Extension to cross-polarized DI pairs is straightforward [22] and

onclusions remain the same on GLCM characterization of texture

eatures and related classification. With the input image I in , the

ATLAB code then calls a commercial software for optical design

Zemax, 2009) to trace the scattered light “rays” from �in located

t x = − 150 μm inside the sheath fluid in flow chamber to the im-

ge plane �im 

as shown in Fig. 1 . The ray tracing is carried out for

ach pixel of I in with initial directions given by ( θ s , ϕs ) through the

heath fluid as host medium, flow chamber glass, air and imaging

nit to obtain an image I out of 640 × 480 pixels at �im 

as the cal-

ulated DI. Comparison of the calculated DI data against the mea-

ured ones presented in our previous study [17] and here in Fig. 2

hows clearly that the coherent nature of the scattered light in DI

s accurately modeled by the simulation method described above

espite the fact that ray-tracing is based on geometric model. We

urther note that the imaging unit shown in Fig. 1 is a simplified

onfiguration for DI simulation without the polarizing beam split-

er and the second arm of tube lens and camera. 

. Results 

.1. Comparison to the measured data in the sphere cases 

To demonstrate the accuracy of DI simulations, we first com-

are in Fig. 2 the calculated DIs with n ph = 1.558 and n h = 1.334 to

he measured data acquired with different polystyrene sphere sus-

ensions. The calculated DI data of sphere particles were selected

ith diameter D s close to the nominal D s values of suspensions

upplied by vendors with coefficient of variation ≤ 20% or 7.5% [9] .

he two measured DIs to the right of top row in Fig. 2 are obvi-

usly due to aggregated spheres. By varying ( θ c , ϕc ) of the cen-

er connection vector C of two touching spheres of D s = 3.0 μm,

e could obtain calculated DIs with similar patterns. The high de-
ree of similarity in patterns between the two DI sets thus pro-

ide additional validation data in support of the simulation method

17] given the errors in �x and particle positioning relative to the

ncident beam focus for the measured data. 

.2. Diffraction imaging simulation of single- and double-object 

articles 

For this study, we generated 1965 homogeneous single-object

nd double-object particles immersed in water to obtain calculated

Is. Among them, 1791 particles have high RI values of n p ( r ) = n ph 

epresenting different particle morphologies or orientations with r

s intraparticle position vector. The rest consists of selected “copy”

articles with low RI values of n p ( r ) = n pl to examine the effect of

I values. Table 1 summarizes 3 particle morphology types and re-

ated RI values with the ranges of major parameters that were used

o obtain calculated DI data. The magnitude and orientation of C

or double-object particles were varied with the center of C fixed

o the coordinate origin defined in Fig. 1 . The diffraction patterns

f these mostly nonspherical particles can be visually divided into

wo categories of “line style” and “grid style”, which have high de-

rees of symmetry due to the homogeneous RI inside each particle.

he former includes spherical, ellipsoidal and double-object parti-

les of C along certain special directions such as θ c = 0 for being

arallel to the incident light beam direction along the z-axis or

c = 45 ° and ϕc = 0 ° for equally between z-axis and x-axis as the

ight collection direction by the imaging unit. The particle mor-

hologies responsible for “grid-style” patterns are those made of

ouble-object particles with large | C | and unsymmetrical C direc-

ions. 
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Fig. 3. Examples of normalized DIs calculated with double-object particles of identical spheres (top two rows), cylinders (middle two rows) and ellipsoids (bottom two rows) 

of n ph = 1.558, �x = 150 μm and λ0 = 532 nm. Each image is marked on top by a configuration drawing with white line representing C and on bottom by ( θ c , ϕc ) and |C|. For 

DIs of double-cylinders, the yellow bars indicate cylinders’ end surfaces. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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Selected examples of calculated DI data by double-object parti-

cles of identical spheres, cylinders and ellipsoids are presented in

Fig. 3 to illustrate their diffraction patterns with the high RI values

of n ph = 1.558 and n h = 1.334. By examining these DI data, one can

observe that the diffraction patterns of double-sphere particles ex-

hibit relative high degrees of similarity to those of double-ellipsoid,

while the patterns of both particle types show significant differ-

ences from those of double-cylinder particles. It is obvious that ef-

ficient methods of image analysis and machine learning algorithms

for particle classification need to be developed to quantitatively in-

vestigate the variations in diffraction patterns and the correlations

between these patterns and morphological parameters of the par-

ticles. For this purpose, we chose clustering algorithms of machine

learning to classify the diffraction patterns in the GLCM parameter

space because these classifiers require no training or prior knowl-

edge on DI data type and provide insight on the ability of GLCM

parameters to characterize the image data. 

The 16-bit DI data calculated with particle morphologies shown

in Table 1 were first normalized individually into 8-bit images for

efficient calculations of GLCMs in 4 directions of neighboring pix-

els (0 °, 45 °, 90 ° and 135 °). Each set of 4 GLCMs were averaged fol-

lowed by extraction of 15 parameters to characterize image tex-

tures for particle classification with definitions and symbols given

in Supplementary Material (see S1). In addition to the GLCM pa-

rameters of normalized DIs, we have also obtained two scattering

intensity parameters of integrated forward scatter (IFS) and inte-
 i  
rated side scatter (ISS) from the angle-resolved Mueller matrices

utput by ADDA. The parameter IFS was calculated by integrating

 11 ( θ s , ϕs ) over the forward scattering directions of θ s ∈ [5 °,15 °]
nd ϕs ∈ [175 °,185 °] while ISS over the side scattering directions

f θ s ∈ [85 °,95 °] and ϕs ∈ [175 °,185 °]. Different combinations of

he 15 GLCM parameters with IFS and ISS, were selected to form

ifferent classifiers for evaluation of their performance in recogniz-

ng particle types in the multi-dimensional parameter space. 

.3. Classification of particles by GMM based clustering algorithm 

Several clustering algorithms have been investigated for classi-

cation of particle types that include k-means and related variants,

ierarchical, GMM and manifold learning. The best classifiers with

igh stability and computational efficiency for this study were ob-

ained by combining the hierarchical with GMM clustering algo-

ithms. In this approach, the hierarchical clustering was applied

rst to a chosen set of GLCM and intensity parameters extracted

rom the calculated DIs, which divided the corresponding parti-

les into k clusters with k = 3. The results were then imported into

MM as the initial fitting parameters. The combination of hierar-

hical and GMM clustering algorithms is very effective to remove

he sensitivity of GMM output to the initial parameters that are

sually set randomly. As the first step of clustering, the hierarchi-

al algorithm starts by assuming each DI, or associated particle, be-

ng a cluster of its own. It then iterates by linking two clusters in
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Table 2 

Confusion matrices of GLCM classifiers for all particles. 

Cluster ( 1 ) C 1 C 2 C 3 normalization scheme; (P i ); μA ±σ A 
( 2 ) 

Sphere 99 352 163 uniform norm. (all 15 parameters) 48.0% ± 6.8% 

Cylinder 290 126 283 

Ellipsoid 154 204 294 

Sphere 30 491 93 type norm. (all 15 parameters) 55.7% ± 17.2% 

Cylinder 191 200 308 

Ellipsoid 280 232 140 

Sphere 135 292 187 uniform norm. (COR,SAV,SEN,DEN,CLS) 45.1% ± 1.9% 

Cylinder 300 132 267 

Ellipsoid 125 235 292 

Sphere 44 491 79 type norm. (VAR,SVA ,ENT,DVA ,MAP) 65.8% ± 11.4% 

Cylinder 458 65 176 

Ellipsoid 1 312 339 

1 Rows represent ground truth. Bold numbers represent assigned particle types for three 

clusters derived by the hierarchical + GMM classifier. 
2 (P i ) represents the set of normalized GLCM parameters used by the classifier, μA and 

σ A are the mean value and standard deviation of classification accuracies for 3 particle 

types. 
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a  
ach step according to the Ward’s method [23] . In this method the

istance between any two clusters, A and B, is measured by the in-

rease of sum of squares for the linked cluster of A ∪ B from those

f A and B given by 

 AB 
2 = 

∑ 

i ∈ A ∪ B 
| p i − c A ∪ B | 2 −

∑ 

i ∈ A 
| p i − c A | 2 −

∑ 

i ∈ B 
| p i − c B | 2 (3) 

here p i and c A (or c B or c A ∪ B ) is respectively the position vec-

or of i th particle and cluster A’s (or B’s or A ∪ B’s) centroid in the

LCM parameter space. The cluster linking in each step proceeds

y calculating d AB 
2 for all paired clusters and executing on the two

f smallest d AB 
2 . The process continues until the number of clus-

ers is reduced to k, which is 3 for our study. 

For subsequent clustering, the GMM algorithm imports the hier-

rchical output of grouping DI data or particles into 3 clusters ob-

ain a Gaussian probability density function (pdf) for each cluster

n the given parameter space. Classification is optimized by max-

mizing iteratively a likelihood function L defined as the logarith-

ic sum of pdf’s over all particles assigned to different clusters.

ach iteration varies the cluster assignment and pdf parameters to

ncrease L until its value stabilizes [24] . Afterwards, each cluster of

 1 , C 2 and C 3 was assigned to one particle types defined in Table 1 ,

phere, cylinder and ellipsoid, based on the dominant type in a

onfusion matrix. An accuracy A is defined to measure the perfor-

ance of a classifier by the number ratio of correctly identified

article type to the total number of particles. If two clusters are

ominated by the same particle type, the assignment was made so

hat the mean value of A, defined as μA , for 3 types was maxi-

ized. 

Particle classification with GLCM parameters has been inves-

igated by different classifiers with parameter number increased

rom 3 to 15 to explore the possibility of unsupervised classifi-

ation according to the diffraction patterns only. The values of

ach parameter were normalized to the range of [0, 1] with two

chemes before clustering analysis. The uniform scheme (uniform

orm.) refers to parameter normalization by the same minimum

nd maximum values of all DI data while the type scheme (type

orm.) does that with the minimum and maximum values for each

article type. In Table 2 we present the confusion matrices of clas-

ifiers with all particles in 4 cases of maximum μA values using 15

r 5 GLCM parameters by the two normalization schemes. These

esults show clearly that the mean accuracy values of μA are very

ow for either normalization scheme. Because RI values are related

o molecular polarity, the calculated DIs correspond to particles of

ifferent morphological types and “molecular” types as well. 
To examine the effect of morphology on classifiers with the

LCM parameters only, we removed those DIs calculated with low

I values of n p = n pl = 1.400 and performed clustering analysis on

he 1791 particles with high RI value of n p = n ph = 1.558. Table 3

resents selected results of 5-parameter classifiers. In this case,

A improves significantly to a very high value of 95.7% with the

ype normalization scheme but it reduces to 60.9% if the uni-

orm scheme was applied. Furthermore, even for the best case of

A = 95.7%, reducing number of particles can lead to significant

uctuations in accuracy that indicates the instability of classifier

erformance. 

In above clustering analysis with GLCM parameters only, the in-

ut DIs were individually normalized and thus carry no informa-

ion on relative differences in integrated scattered light intensity

mong the particles. One thus expects that clustering accuracy and

tability may improve by adding two parameters of IFS and ISS.

t is interesting to first note that the mean accuracy μA remained

ery low if IFS and ISS were used without GLCM parameters for

lustering, which is expected based on numerous studies by the

onventional flow cytometry using only forward scatter and side

catter signals. In contrast, with addition of IFS to GLCM parame-

ers, the stability of classification accuracy was found to increase

ignificantly while adding ISS to GLCM parameters show little im-

rovement. Table 4 lists the 4 best classifiers of selected GLCM

arameters and IFS which show that high classification accuracy

an be achieved in multiple combinations of GLCM parameters.

n Fig. 4 , we present the normalized histograms of the GLCM pa-

ameter COR or correlation and IFS for particles having n p = n ph 

hat is used to obtain highest accuracy μA = 97.2% for the case

f the second hierarchical+GMM classifier in Table 4 . One can see

rom the two plots that values of these parameters overlap signifi-

antly among the three particle types. The rescaled curves of Gaus-

ian pdf obtained by the hierarchical+GMM classifier and Gaussian

urve fitted to the labeled data are also shown in Fig. 4 respec-

ively as solid and dash lines. For the histogram of COR, the two

aussian curves exhibit larger difference in the case of spheres

han the curves for cylinders and ellipsoids, which is consistent

ith confusion matrix in Table 4 showing larger errors of classi-

cation in the sphere case. 

. Discussion 

The DIFC method based on diffraction imaging combined with

ow cytometry presents a different approach for rapid analysis

nd classification of micro-sized particles in comparison to con-
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Table 3 

Confusion matrices of GLCM classifiers for particles of n p = n ph = 1.558. 

Cluster C 1 C 2 C 3 normalization scheme; (P i ); μA ±σ A 

Sphere 84 93 388 uniform norm. (ASM/VAR/IDM/ENT/DIS) 60.9% ± 5.7% 

Cylinder 375 221 44 

Ellipsoid 138 324 124 

Sphere 57 503 5 type norm. (COR/VAR/SAV/DEN/MAP) 95.7% ± 4.8% 

Cylinder 0 0 640 

Ellipsoid 574 8 4 

Table 4 

Confusion matrices of GLCM + IFS classifiers for particles of n p = n ph = 1.558. ( 1 ) . 

Cluster C1 C2 C3 (P i ); μA ±σ A 

Sphere 515 49 1 (COR/SEN/ENT/ DIS/IFS) 93.8% ± 2.6% 

Cylinder 33 598 9 

Ellipsoid 7 8 571 

Sphere 537 27 1 (COR/IDM/SEN/ENT/ DIS/IFS) 97.2% ± 1.9% 

Cylinder 1 638 1 

Ellipsoid 14 4 568 

Sphere 467 29 69 (CON/COR/IDM/SEN/ ENT/DIS/CLS/IFS) 83.4% ± 7.9% 

Cylinder 0 166 474 

Ellipsoid 0 547 39 

Sphere 463 71 31 (COR/IDM/SEN/ENT/ DVA/DIS/CLS/CLP/IFS) 82.6% ± 8.0% 

Cylinder 0 468 172 

Ellipsoid 0 43 543 

1 All GLCM and IFS parameters were normalized by type scheme. 

Fig. 4. Normalized histograms of COR and IFS parameters for the three particle types with n ph = 1.558. The solid and dash lines represent respectively the rescaled curves of 

Gaussian pdf obtained by the hierarchical+GMM classifier and the Gaussian curves fitted to the histograms of the labelled data. 
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−  
ventional microscopy and flow cytometry that requires fluores-

cent staining. Unlike digital holography and quantitative phase mi-

croscopy [25–27] , the DIFC method is not to be used to retrieve

m( r ) of the scatterer particle in Eq. (1) from the measured distribu-

tion of I s and thus needs no a priori knowledge on cell morphology

and complex inverse calculations. Rather, the goal of DIFC approach

is to extract effective pattern parameters from the DI data for mor-

phology based analysis and classification of particles. In this re-

port we have applied a validated method of simulation to calcu-

late DI data from a large group of micro-sized homogeneous single

particles made of single and double objects. Using the GLCM algo-

rithm, the DI data have been characterized by up to 15 parameters

per image that is formed by imaging the coherent light scattered

along side directions. We have shown that accurate classification

of 3 particle types can be achieved with statistical significance us-

ing a GMM based clustering algorithm in the parameter space of

GLCM and angularly integrated forward intensity of scattered light
ven when they have homogeneous and identical intraparticle RI

alue. 

We have previously shown that classification of biological cells

ccording to their phenotypes can be achieved with the DIFC data

n the cases of Jurkat versus Ramos derived from human lympho-

ytes [10] , PC3 versus PCS from human prostate cells [12] and

ther cell lines [8,28] . In comparison, classification of regularly-

haped and homogeneous particles is expected to be difficult be-

ause only shape difference affects the diffraction patterns. This

an be corroborated by comparing the ranges of GLCM parame-

ers between the measured DIs of prostate cells [12,29] and cal-

ulated DIs of the three particle types in this report. For example,

he parameter COR or correlation is one of the key GLCM parame-

ers used for achieving the cases of high classification accuracy in

ables 3 and 4 . By definition, COR measures the intensity correla-

ion of the paired pixels for GLCM calculation and ranges between

1 and 1. The COR values of the calculated DIs for the three parti-
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le types are very high ranging from 0.992 to 0.999 while those for

he measured DIs of prostate cells are much smaller ranging from

4.92 × 10 −3 to 0.996 with mean values around 0.84. It is clear

hat the much stronger intensity correlations of the two neigh-

oring pixels in our case here is a consequence of RI homogene-

ty and high degree in shape symmetry in comparison to those of

iological cells. Thus, the failure of classification algorithms such

s k-means clustering (results not shown) that require overlap-

ing as small as possible in parameter space may be attributed

o the mixed nature of COR and other parameter distributions as

isplayed in Fig. 4 , where our results demonstrate the significant

mprovement in accuracy by GMM. Taken together, these results al-

ow us to quantitatively assess the ability of GLCM parameters and

cattering signals for label-free analysis of homogeneous particles,

hich is very useful for further increasing classifiers’ performance

n DI analysis with supervised machine learning tools such as deep

eural networks. The outcomes of this study also provide fresh in-

ight on the correlation between 3D shapes of homogeneous parti-

les and pattern features of DI data. Finally, we note that in ad-

itional to COR other GLCM parameters including sum entropy

SEN), entropy (ENT), dissimilarity (DIS) and inverse difference

oment (IDM) [13] are also effective in recognizing the particle

ypes. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.jqsrt.2018.12.010 . 
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